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QUASI TWO-DIMENSIONAL FLOW THROUGH A SUPERSONIC CASCADE 

Joseph J e h l  (1) 

ABSTRACT. A theo re t i ca l  scheme i n  which t h e  influence of 
the t ransverse  stream contraction i n  a compressor o r  tu rb ine  
cascade on t h e  supersonic flow crossing th i s , ca scade  i s  taken 
i n t o  account. 
scheme may a l s o  b e  adapted t o  the case of a flow va r i a t ion  i n  
the stream. 

The numerical method developed i n  this t h e o r e t i c a l  
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hcI- 

Io Introduction 

The s t rong  compression r a t i o s  i n  supersonic compressors lead  t o  t h e  adaptation- __ 

of non-cylindrical ex te rna l  contours of these machines. 

flow i n  these blade g r i l l s ,  which is performed by making a cy l ind r i ca l  c u t  of 

the r o t o r  and developing i t  onto a plane, must take i n t o  account the r a d i a l  

component of ve loc i ty .  The importance of t h i s  term increases as the stream 

convergence increases  and a l s o  increases  w i t h  t h e r a d i a l g r a d i a n t o f  the enthalpy, 

The classical two-dimensional method of (studying 

g r i l l s  ceases t o  have v a l i d i t y .  However, the three-dimensional ca l cu la t ion  

of the flow i n  a l l  i t s  gene ra l i t y  would make it necessary t o  use methods which 

would be  too d i f f i c u l t  t o  be  of any p r a c t i c a l  use. 

presenting here an approximate quasi-two-dimensional method which Is analogous 

t o  those s tudied  by Shaalon and Horlock 113 and by Mani and Acosta [2] f o r  the 

case of subsonic blade g r i l l s  where the e f f e c t s  of the lateral stream con- 

t r ac t ion ,  v a r i a t i o n  of the axial ve loc i ty  components and va r i a t ions  of the 

t o t a l  y i e lda re rep reqen ted  by a flow-model having a constant c ross  sec t ion ,  

The ana lys is  of the 

supersonic flows i n  blade 

This is  why we  are 

-/138 

._.-.. . - - -  - -~ 

* Numbers i n  the margin i n d i c a t e  the pagination i n  the o r i g i n a l  fore ign  text, 

('I Engineer at Soc i6 t l  Brown Boveri, Baden (Switzerland) 



The ca lcu la t ion  presented here  was  programmed on an IBM 360-50 computer. 

11. Defini t ion of t he  Problem 

The three-dipensional e f f e c t  i n  a blade g r i l l  can be due t o  the  following: 

a )  I n  a smooth wind-tunnel with supersonic blade g r i l l s  the  progressive 

thickening of t h e  boundary l aye r s  along the  lateral  s ide  of the  tunnel reduces 

the  cross  sec t ion  ava i lab le  f o r  passage of t he  undisturbed flow. 

having a cross sect ion,  t h i s  e f f e c t  can be represented by p a r i e t a l  i n j e c t i o n  

of f lu ids ;  

I n  a flow 

b) In  a cross  sec t ion  of a compressors a radialdisplacement of t he  

stream surfaces  br ings about a rad ia lgrad ien t  of t h e  y ie ld .  

of t h i s  gradient  can be obtained by means of t he  condition 

of t he  global  y i e ld  of t h e  machine and a condition of rad ia lequi l ibr ium of the  

stream a t  the  output of t he  g r i l l .  

An  average value 

of conservation 

We w i l l  only study the  f i r s t  case here, but the general izat ion of t h e  
- __ 

calculat ions t o  the study of a compressor cross  sec t ion  w i l l  not  'encounter i 

with any d i f f i c u l t y .  

L e t  us condider the  motion of a perfec t  f l u i d  i n  a constant cross section. 

Due t o  t h e  f a c t  th9 t  the lateral wal l s  are p a r a l l e l ,  equations of motion 

are wri t ten:  
. -  - 

I 
alp alp 



11.3. Equations f o r  t h e  Charac te r i s t ics  of t he  Quasi-Two-Dimensional Motion - u------------------cI---c------------------ -----------------I-------- 

When the flow under consideration is supersonic (isoentropic flow is assumed 

and quasi- isomtropic  flows is assumed when the  shock waves with no shock waves 

3 

where (u, v) a r e  average values of t he  ve loc i ty  components, normal and 

p a r a l l e l  t o  the  f ron t  of the cascade, respect ively,  taken at  t h e  t ransverse 

height h of the channel. 

volume mass densi ty ,  respect ively,  and the coordinate system (x, y) is defined 

i n  such a way t h a t  t he  Oy axis coincides with the  f r o n t  of t h e  cascade and 

the  Ox axis is p a r a l l e l  t o  the incoming ve loc i ty  (Figure 1). 

P and p are the  average corresponding pressure and 

The equation of mass conservation is wr i t t en  as: 

where W 

t he  wall  e 

is t he  t ransverse ve loc i ty  component of the ve loc i ty  defined along 
P 

Since the flow is i soenerge t ic  and the  f l u i d  is  a per fec t  one, t h e  f l a w  

sound ve loc i ty  (ao is t h e  corresponding is i r r o t a t i o n a l  and a is t h e  l o c a l  

ve loc i ty  a t  rest). The components (u, v) of t he  ve loc i ty  are re l a t ed  

by the  re la t ionships :  

. ,. 
! 

T h i s  general izes  t h e  c l a s s i c a l  equations of two-dimensional motion of a compres- 

s i b l e  f l u i d  through the  case of a flow with p a r i e t a l  i n j ec t ion  of f l u i d .  



form i n  the i n t e r i o r  of the f lu ids ) ,  two cha rac t e r i s t i c s  pass through each 

point  of the physical plane ( ~ 9  y). 

cha rac t e r i s t i c  (I) and the other  i s  a descending cha rac t e r i s t i c  (11) 
corresponding cha rac t e r i s t i c s  i n  the  hodograph plane are re l a t ed  t o  them and 

1139 

One cha rac t e r i s t i c  is an ascending 
The 

are s a t i s f i e d  - - - -  i n  - -  - equations: -. .. .- 

1 2 2 -  where M = (u + v )2/a is  t h e  l o c a l  Mach number9@ = arc t g  (v/u) is  the  angle 

between the ve loc i ty  and t h e  axial direct ion,  y i s  the  isoentropic  constant of 

the gas and M = w /a 

p a r i e t a l  i n j ec t ion  ( s t r i c t l y  speaking, M must be defined with respect  t o  

t h e  l o c a l  sound ve loc i ty ,  but  within t h e  framework of  t h e  simplifying 

assumptions used here,  t h e  ve loc i ty  of sound al at  

replaced by a and leads  t o  a constant parameter). 

is a veloci ty  coef f ic ien t  which takes i n t o  account the  
P P I '  

P 

t h e  cascade input  can b e  

11.4.1. A t  the cascade input.  

We only consider operation i n  the  supersonic range 133, and the  per iodic i ty  

of t h e  flow, i.e. 9 t h e  condition of "unique incidence" 143 determines t h e  

conditions a t  the cascade input.  

of t h e  p r o f i l e  of the-cascade cons is t s  of a rectilinear p a r t  in the v i c i n i t y  

of the top phase and i n  such a way tha t  t he  flow l i s 8  uniform i n  the input  plane 
of the cascade. 

4 

In t h e  examples presented below t h e  top phase 
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Figure 2. Determination of t he  mmning ~. _. 

point .  
a )  Physical plane 
b) Hodograph plane 

11.4.2. Along t h e  p ro f i l e .  

Since the  p r o f i l e  geometry is  

known, t h e  condition tha t  t he  ve loc i ty  

is  p a r a l l e l  t o  the  tangent t o  t h e  w a l l  

def ines  the angle ,0  between the ve loc i ty  

and t h e  normal and the  f ron t  of the  

I cascade 
rl A 

!Pi d a '  s- ~ 

11.4.3. Through a shock wave. 
: $  

Since the shock wave thickness is i 

I i n f i n i t l y  s m a l l ,  the  correspondence 
I 

I 

re la t ionships  established i n  the  two- 
Figure '* Longitudina1 and transverse dimensionsal theory [§] ~ for shock cross  sec t ions  through a supersonic 

cascade waves remain i n  e f f e c t ,  
- 

I 2 L a)  Longitudinal cut  - AA. 
b) Transverse cut - BB. 

5 



I 

where M 

(3 is  the  angle between the  shock and t h e  incident flow, JI is the  angle of 

flow def lec t ion  through the  shock. 

w i l l  only be in t e re s t ed  i n  the so lu t ion  f o r  which the flow remains supersonic 

a f t e r  the  shock wave (weak shock) which can be t r ans l a t ed  i n t o  the condition 

and M2 are the  Mach numbers ahead and downstream. of t he  shock wave . 1 

In  the  'remainder of t h e  ca lcu la t ions  we 

111. Method of In tegra t ion  

The numerical in tegra t ion  methods f o r  supersonic flow equations [6] can 

be generalized i n  the  case considered here. 

coordinates of t he  point (3) located at the  in t e r sec t ion  of the  c h a r a c t e r i s t i c s  

(I) emanating from (1)band (11) emanating from (2) (Figure 2), the  equations 

f o r  (4) can be wr i t t en  i n  the  form of f i n i t e  increments. 

re la t ionships  are obtained i n  the  physical  plane: 

Thus, i n  order t o  determine the  

The following 

_ _  - 

- 

I n  the hodograph plane these re la t ionships  are: 
- - - - _-___ . 

The correspondence between t h e  parameters a, 8, 6 ,  5 ,  and AI 

and f i n a l  values of t h e  parameters M and 0 is given i n  t a b l e  I: 

and t h e  i n i t i a l  

6 



TABLE I 

en+ e, 
On., = 7 

An i n t e r a t i o n  ca lcu la t ion  is 

necessary in ' o rde r  t o  determine the  

coordinates and the ve loc i ty  com- 

ponents a t  (3) from the  poin ts  (1) (2). 

This i t e r a t i o n  ca lcu la t ion  is term- 

inated when an accuracy c r i t e r i o n  is 
s a t i s f i e d  

As an example, l e t  us present 

the  equations which govern the  encount- 

er of a cha rac t e r i s t i c  (I) with a 

w a l l  having an angle w with the ax i s  

Ox. The point  (3) corresponding t o  

in t e r sec t ion  of t he  c h a r a c t e r i s t i c  

(I) emanating from point (1) (Figure 3) with the  w a l l  can be determined 

by means of the equation: 

and the  same kind of i n t e ra t ions  as those used far t h e  determination of t he  

running point .  

When the  wal l  has a brehk Csw an e q a n s i o n  fan  emanates from this point,  

7 



which from a mathematical point of view behaves l i k e  

i n f i n i t e  number of cha rac t e r i s t i c s  of one of t h e  famil ies  emanates.fkom t h i s  

point.  

waves which each correspond t o  a deviation 

a mult iple  point. An 

The numerical method u t i l i z e d  separates  t h i s  bundle i n t o  k d i s c r e t e  

of t h e  flow. These cha rac t e r i s t i c s  are given by t h e  equations: 

depending on whether they o r ig ina t e  along the lower o r  upper w a l l .  

i and j 

The indices  

have the de f in i t i on  indicated i n  Figure 4. 

__ . . . . - - 

X 

l e  

I 

- - .- 

I 

a b 
i f  

- -. 

Figure 3. In te rsec t ion  of a character- Figure 4. Point located i n  an ex- 
i s t i c  with a w a l l .  pansion bundle. 

a )  Physical plane 
b) hodograph plane 

8 
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IV. Shock Waves /141 - 
J u s t  as i n  any supersonic motion, shock waves can appear i n  the  flow. 

A d i f f e r e n t  ca lcu la t ion  can be  car r ied  out depending on whether we a r e  dealing 

with a point at which the shock o r ig ina t e s  o r  running point  along the  shock. 

Here w e  w i l l  only consider the  case where due t o  the  sharp va r i a t ion  i n  

the s lope of one w a l l  of t he  assembly,so as t o  reduce the  cross  sec t ion  of 

the  channelva shock wave appears i n  the  f l u i d  (Figure 5). 
use i s  the  one developed by P. Diringer and P. Laval, 

The method we  w i l l  

Equations (6) and (7) a r e  used t o  determine t h e  K- conditions f o r  K at  

the  angular point of the wall .  

shock wave a r e u s e d t o  determine the conditions K downstream of a shock f o r  

a def lec t ion  I). 
The correspondence Equations (5) without a + 

IV.2. Runnine Point alone the Shock Wave 

The ca lcu la t ion  of a running point along a shock wave requires  interpo- 

l a t i o n s  as w e l l  a s  the  i t e r a t i o n s  mentioned above. This is  because the  shock 

wave does not  pass through the nodes of the gr id  of cha rac t e r i s t i c s ,  The 

p r inc ip l e  of ca lcu la t ions  i s  adapted from [6]. 
the  point along the  nth cha rac t e r i s t i c s  of family I1 from the  var iab les  

given along the  ( n - l ) t h  ' cha rac t e r i s t i c s  of the  same family (Figure 6) 

This e n t a i l s  determining 

The ca lcu la t ion  is  straightforward up t o  t he  point J e F i r s t ,  the  point i s - o n  
I 

-_ n 
the same c h a r a c t e r i s t i c  IIn located a t  the-  i n t e r sec t ion  point-of  t he  family 

I c h a r a c t e r i s t i c  emanating from point Kim1 
edge of the  shock wave a t  its in t e r sec t ion  point  with 11, - 

It is located a t  the  upstream 

The conditions 
I 

9 i 



a c 

Figure 5. Conditions a t  the beginning 
poin t  of a shock wave. 

a) Physical plane 
b) Hodograph plane 

i 
1 

, 
I 

Figure 6 .  Determinatpn - of the pre- 
sen t  po in t  Kn(Kn ,Kn ) of t h e  shock 
wave a t  t h e  i n t  ersect ion  
with the c h a r a c t e r i s t i c  11,. 

- 
a t  Kn are obtained by l i n e a r  i n t e rpo la t ion  between Jn and Li The 

conditions along t h e  upstream shock wave f r o n t  K + are derived i n  t h e  same 

way from the c h a r a c t e r i s t i c s  emanating from an appropriate point  L 

downstream p a r t  of t h e  I1 

i f  t h e  conditions K- and K -t correspond t o  t h e  r e l a t ionsh ips  (5). 

n 
of t h e  n-1 

cha rac t e r i s t i c .  The poin t  is co r rec t ly  chosen n- 1 

n n 

The ca l cu la t ion  is  s l i g h t l y  complicated i f  t h e  poin t  Ln - can not be 

determined along t h e  c h a r a c t e r i s t i c  1Inml 

too  close.  

due t h e  f a c t  t h a t  t h e  w a l l  is 
- 

It is  then necessary t o  introduce an in t e rpo la t ion  c h a r a c t e r i s t i c  
V 

Its point  of o r ig ina t ion  along the  downstream edge of t h e  shock 

a family I 
IIn-l* 0 

wave is  chosen so t h a t  a f t e r  r e f l e c t i o n  from t he  w a l l  a t  Ln-l 

c h a r a c t e r i s t i c  is produced which passes through Kn+ (Figure 7).  

ca lcu la t ion  is applied i n  t h e  v i c i n i t y  of t h e  poin t  of or ig ina t ion  of t h e  

shock wave. 

This 

10 



I 
i 
I 

' i  
I 
i 

Figure 7. Determination of the present point  
- +  Kn(Kn , Kn ) of t h e  shock wave i n  t h e  v i c i n i t y  

of i t s  i n i t i a l  point. 

V. Cascade w i t h  Plane P l a t e s  

The most simple appl ica t ion  of the preceding ca lcu la t ions  i s  t h e  appl ica t ion  

t o  a cascade with plane p l a t e s .  W e  s tud ied  t h e  one-dimensional flow with a 

t ransverse  ve loc i ty  component as an example i n  order t o  pro tec t  the  program. 

Physical ly ,  such a flow corresponds t o  t h e  case of a cascade having normal 

f l a t  p l a t e s  along t h e  f r o n t  of t h e  cascade. 

ing  of t h e  boundary l a y e r  (Figure $a) ,  A two-dimensional representa t ion  

cons i s t s  of a uniform flow i n  which in f in i t e s ima l ly  t h i n  f l a t  p l a t e s  are 

inse r t ed  without incidence (Figure 8b). 
along t h e  lateral  w a l l s  is represented by a constant normal ve loc i ty  

plane of the cascadep 

There is  a l s o  a lateral  thicken- 

The thickening of t h e  boundary l aye r  

i n  t h e  

The equations of motion (3) can b e  reduced t o  the following i f  t he re  is 

no vertical component v: 



a a Y--lua a =ao--  
2 .  

- _ _ _  

reduced abscissa  
._ _ _  c- - 

Figure 8a. Diagram of a cascade with Figure 9. Comparison of t h e  pres- 
su re  d i s t r ibu t ion  along t h e  upper plane p l a t e s  p a r a l l e l  t o  the wind. 
and lower surfaces of the p l a t e s  
a t  the pressure ca lcu la ted  by 
means of the one-dimensional method. 

Figure 8b. Cross sec t ion  of the cascade 
w i t h  plane p l a t e s  by plane normal t o  
the cascade. 

The i n t e g r a l  of th i s  equation can be written as: 

The constant is determined by the condition u = ul for x = 0 .  



The pressure  d i s t r i b u t i o n  derived from this one-dimensional ca lcu la t ion  

w a s  compared in Figure 9 t o  t h a t  obtained by means of a two-dimensional 

method for a Mach number of M1 = 1.8 a t  the  i n l e t  of t h e  cascade. 

ing values of the parameter which determine t h e  magnitude 

ve loc i ty  were used 1 

The follow- 

of t h e  transverse 

_I 

5 0; O,OI and 0,02 
Vl 

(The index 1 refers t o  the i n l e t  of t h e  cascade). 

t h a t  the e f f e c t  of t ransversewind is  far from neg l ig ib l e  as far  as t h e  

d i s t r i b u t i o n  is concerned. However, i n  t h e  case considered here, no blade l i f t  

occurs. 

It can be seen i n  Figure 9 

pressure 

VI e Cascade with a Double-Triangle P r o f i l e  

I n  order t o  compare t h e  pred ic t ions  given by t h e  ca lcu la t ions  t o  experiment- 

a l  r e s u l t s ,  t h e  flow i n  a cascade having a double-triangle p r o f i l e  (Figure 1) 

w a s  analyzed. 

[ 7 ] .  
ment. 

are co l lec ted  i n  Table 11. 

Complete experimental results are ava i l ab le  f o r  t h i s  cascade 

This makes it poss ib le  t o  make a connection between theory and experi- 

The construction da ta  and experimental da t a  of t h e  cascade s tudied  

TABLE 11 

Study of supersonico double-triangle blades. 

Chord 60 mm 
Step 50 mm 

a t t a c k  6" 
18 O 

Leading edge angle of 

Upper angle of twist 

Set angle 60 O 

Upstream Mach number 1*7§ 



Figure loa. Distribution of the pressure on top; double-triangle 
- cascade, _ _  - 

410 420 q30 0.40 450 0.1 

Figure lob Dis t ribut ion 
compressor e 

of the 
. .. 

pres sure --below; eloubl e- t riangular 



. 
f o r  various magnitudes of t h e  t ransverse  wind: 

Figure LO shows t h e  pressure va r i a t ions  of t h e  upper and lower sur faces  

wP - =-0,014; 0; 0,010; 0,014; 0,020 
"1 

- -  
as w e l l  as t h e  experimental po in ts ,  recorded at mid-span. The subscant ia l  _ _  

influence of t h e  lateral  wind on the  pressure d i s t r i b u t i o n  along t h e  blades 

is  q u i t e  no t icable .  Since t h e  experimental po in ts  l i e  e s s e n t i a l l y  along 

t h e  curve corresponding t o  w = 0, i t  can be  concluded that t h e  mid-span 

cross  sec t ion  of the blade e s s e n t i a l l y  behaves as though it w e r e  placed in  a 

two-dimensional flow. 

P 

V I 1  e Conclusion 

The method of c h a r a c t e r i s t i c s  developed for the  study of two-dimensional 

supersonic flows can be  applied t o  t h e  case of a motion having i n  addition 

a t ransverse  ve loc i ty  component, as is encountered i n  supersonic compressors 

with a s t rong  

supersonic cascades, t h e  ca lcu la t ion  ca r r i ed  out  made i t  possible t o  show t h a t  

t he  measurements ca r r i ed  out  at mid-span of the blades correspond w e l l  w i t h  

plane flow. 

by the i n t e r a c t i o n  of p a r i e t a l  boundary layers . '  

convergence stream. I n  t h e i r  p a r t i c u l a r  case of tests of 

This means that t h e  measured c ross  sec t ion  is not  influenced 
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